- qspec.a_dipole_cart ( i , j_l , f_l , m_l , j_u , f_u , m_u , as_sympy = False )[source]
The cartesian transition dipole element vector $$\vec{A}_{Fm}^{F^\prime m^\prime} = \begin{pmatrix} \frac{1}{\sqrt{2}}\left[(A_{Fm}^{F^\prime m^\prime})_{-1} - (A_{Fm}^{F^\prime m^\prime})_1\right]\\ \frac{i}{\sqrt{2}}\left[(A_{Fm}^{F^\prime m^\prime})_{-1} + (A_{Fm}^{F^\prime m^\prime})_1\right]\\ (A_{Fm}^{F^\prime m^\prime})_0 \end{pmatrix},$$ with $(A_{Fm}^{F^\prime m^\prime})_q$ as in
a_dipole. See [R. C. Brown et al., Phys. Rev. A 87, 032504 (2013)].- Parameters:
-
- isympy_quant
The nuclear spin quantum number $I$.
- j_lsympy_quant
The electronic total angular momentum quantum number $J_l$ of the lower state.
- f_lsympy_quant
The total angular momentum quantum number $F_l$ of the lower state.
- m_lsympy_quant
The magnetic quantum number $m_l$ of the total angular moment of the lower state.
- j_usympy_quant
The electronic total angular momentum quantum number $J_u$ of the upper state.
- f_usympy_quant
The total angular momentum quantum number $F_u$ of the upper state.
- m_usympy_quant
The magnetic quantum number $m_u$ of the total angular moment of the upper state.
- as_sympybool
Return the result as a symbol (
True) or as afloat(False).
- Returns:
-
- a_dipole_cartsympy.vector.vector.Vector | ndarray
The cartesian transition dipole element vector $\vec{A}_{Fm}^{F^\prime m^\prime}$.