- qspec.simulate. Interaction.schroedinger ( t , delta = None , m = 0 , v = None , y0 = None )[source]
Solver for the Schrödinger equation $$\begin{aligned} \frac{\partial\vec{\psi}}{\partial t} &= -\mathrm{i}H\vec{\psi}, \end{aligned}$$ where the Hamiltonian $H$ (2π MHz) is time-independent whenever possible, see
qspec.simulate.Interaction.hamiltonian. Solutions fornsamples can be calculated in parallel fornttimes.- Parameters:
-
- tarray_like
The times $t$ when to compute the solution. Any array is cast to the shape
(nt, ), wherentis the size of the arrayt(μs).- deltaarray_like
An array of laser frequency shifts $\vec{\Delta}$.
deltamust be a scalar, a 1d- or 2d-array with shapes(n, )or(n, nl), respectively, wherenlis the number of lasers of theInteraction(MHz).- mOptional[int]
The index of the shifted laser. If
deltais a 2d-array,mist omitted.- varray_like
Atom velocities $\vec{v}$. Must be a scalar or have shape
(n, )or(n, 3). In the first two cases, the velocity vector(s) are assumed to be aligned with the $x$-axis (m/s).- y0array_like
The initial state of the
Atom. This must beNoneor have shape(Atom.size, )or(n, Atom.size). IfNone, all states with the same label as the firstStateinatom.statesare populated equally.
- Returns:
-
- psi_tndarray
The integrated Schrödinger equation as a complex-valued array of shape
(n, Atom.size, nt).