- qspec.simulate. Interaction.hamiltonian ( t , delta = None , m = 0 , v = None )[source]
The interaction Hamiltonian of the coherent light-matter interaction in frequency units $$\begin{align} H &= H_\text{diagonal} + H_\text{off-diagonal}\\[1ex] &= \operatorname{diag}(A\vec{\omega}_0 + B\vec{\omega}^\prime) + \frac{1}{2}\sum\limits_m\Omega_m,\\[2ex] \omega^\prime_m &= 2\pi(\nu_m + \Delta_m) \gamma(\vec{v})(1 - \hat{k}_m\cdot\frac{\vec{v}}{c}) \end{align}$$ where $A$ (
Interaction.atommap
) is a matrix with shape(atom.size, atom.size)
, mapping the atomic frequencies $\vec{\omega}_0$ onto the diagonal of the Hamiltonian, $B$ (Interaction.deltamap
) is a matrix with shape(atom.size, #lasers)
, mapping the laser frequencies in the rest-frame of the atom $\vec{\omega}^\prime$ onto the diagonal of the Hamiltonian, $\vec{v}$ is the velocity vector of the atom, $\hat{k}_m$ is the direction of laserm
, $\Delta_m$ is the detuning of lasersm
, $\gamma(\vec{v})$ is the time-dilation factorqspec.physics.gamma_3d
, and $\Omega_m$ is the complex Rabi-frequency matrix of laserm
, seeqspec.simulate.Interaction.rabi
. If the Hamiltonian is time-dependent, because two or more lasers drive the same transition or form loops within the atom, the off-diagonal Hamiltonian becomes $$ (H_\text{off-diagonal})_{ij} = \frac{1}{2}\sum\limits_m(\Omega_m)_{ij} \exp\left[\operatorname{sign}(j - i)\,\mathrm{i}t\left(B\vec{\omega}^\prime\,- (T_m)_{ij}\,\omega^\prime_m\right)\right]\quad\text{for all }i\neq j, $$ where $T_m$ is a matrix for laserm
that maps the laser frequency onto the transitions $|i\rangle\rightarrow |j\rangle$, whose entries take values $0,\pm 1$, depending on the energetic order of the two involved states and if the transition is driven by laserm
.- Parameters:
-
- tarray_like
The times $t$ when to compute the solution. Any array is cast to the shape
(nt, )
, wherent
is the size of the arrayt
(μs).- deltaarray_like
An array of laser frequency shifts $\vec{\Delta}$.
delta
must be a scalar, a 1d- or 2d-array with shapes(n, )
or(n, nl)
, respectively, wherenl
is the number of lasers of theInteraction
(MHz).- mOptional[int]
The index of the shifted laser. If
delta
is a 2d-array,m
ist omitted.- varray_like
Atom velocities $\vec{v}$. Must be a scalar or have shape
(n, )
or(n, 3)
. In the first two cases, the velocity vector(s) are assumed to be aligned with the $x$-axis (m/s).
- Returns:
-
- HNone
The (time-dependent) Hamiltonian(s) for
n
samples andnt
times in the shape(n, atom.size, atom.size, nt)
($2\pi\,\mathrm{MHz}$).