- qspec.normal_chi2_convolved_f_pdf ( f , f_lab , alpha , m , t , scale_e , e0 = 0 , relativistic = True )[source]
The probability density at the frequency $f$ in the rest frame of an atom with kinetic energy $E_x$, determined through the Doppler shift of $f_\text{lab}$, and distributed according to a convolution of a normal and a $\chi^2_1$ distribution $$\begin{aligned} \rho^{\prime\prime}(f) = \left|\frac{\partial v_x}{\partial f}(f, f_\text{lab})\right| \rho^\prime(v_x(f, f_\text{lab})), \qquad\int\limits_0^\infty \rho^{\prime\prime}(f)\mathrm{d}f = 1, \end{aligned}$$ where $\rho^\prime$ is the probability density function
normal_chi2_convolved_vx_pdf
.- Parameters:
-
- farray_like
The frequency quantiles $f$ (arb. units).
- f_labarray_like
The laser frequency $f_\text{lab}$ in the laboratory frame ([
f
]).- alphaarray_like
The angle $\alpha$ between the laser and the velocity of the atom (rad).
- marray_like
The mass $m$ of the atom (u).
- tarray_like
The temperature $T$ of the environment (K).
- scale_earray_like
The standard deviation $\sigma_{E_x}$ of the normal distribution (eV).
- e0array_like
The mean energy $E_0$ of the normal distribution (eV).
- relativisticbool
Kinetic energies are calculated either relativistically (
True
) or classically (False
).
- Returns:
-
- rho_fndarray
The probability density in thermal equilibrium at the frequency
f
([1/f
]).