- qspec.simulate. Atom.scattering_rate ( rho , as_density_matrix = True , k = None , theta = None , phi = None , k_vec = None , x_vec = None , i = None , f = None , axis = 1 )[source]
The photon scattering rate $$\begin{aligned} \Gamma_\mathrm{sc}\left(\rho, \hat{k}(\theta, \phi), \vec{\varepsilon}\right) &= \sum\limits_{f\in\mathcal{F}} \,\sum\limits_{i\in\mathcal{I}}\sum\limits_{Xk_{fi}}\sum\limits_{j\in\mathcal{I}}\sum\limits_{Xk_{fj}} \rho_{ji}\sqrt{A_{if}^{Xk_{fi}}A_{jf}^{Xk_{fj}}}\\[1ex] &\quad\times\left\lbrace\sum\limits_\lambda (-1)^{k_{fi} + \lambda}\,a_{fi,k_{fi}}^\lambda \left[(-\mathrm{i})^{k_{fi} - X_{fi}}\,\vec{\varepsilon} \cdot\vec{Y}_{k_{fi}\lambda}^{(X_{fi})}(\hat{k}(\theta, \phi))\right]\right\rbrace\\[1ex] &\quad\times\left\lbrace\sum\limits_\lambda (-1)^{k_{fj} + \lambda}\,a_{jf,k_{fj}}^\lambda \left[(-\mathrm{i})^{k_{fj} - X_{fj}}\,\vec{\varepsilon} \cdot\vec{Y}_{k_{fj}\lambda}^{(X_{fj})}(\hat{k}(\theta, \phi))\right]^\ast\right\rbrace\\[3ex] a_{fi,k_{fi}}^\lambda &= (-1)^{F_f + I + k_{fi} + J_i}\sqrt{(2F_f + 1)(2J_i + 1)} \langle F_fm_fk_{fi}\lambda|F_im_i\rangle\begin{Bmatrix}J_i & J_f & k_{fi} \\F_f & F_i & I\end{Bmatrix}\\[3ex] X_{\!fi} &= \begin{cases}+1, & \text{if electric } (\mathrm{E}k_{fi}) \\ \ \,0, & \text{if magnetic } (\mathrm{M}k_{fi})\end{cases}, \end{aligned}$$ where $A_{if}^{Xk_{fi}}$ is the Einstein coefficient for the electric (magnetic) decay $|i\rangle\rightarrow|f\rangle$ and the rank-$k_{fi}$ multipole order, $\vec{Y}_{k_{fi}\lambda}^{(X_{fi})}(\hat{k})$ is the vector spherical harmonic (see p. 215, Eq. (35) in [1]), $\rho$ is the density matrix, $\hat{k}$ is the direction of emission and $\vec{\varepsilon}$ is the complex polarization vector of the emitted photons. The calculation includes interference terms between all multipole ranks
1 <= k <= Atom.decay_map.k_max
if emission directions are chosen through the (theta
,phi
) ork_vec
parameters. Parity mixing is currently not considered, such that all rank-$k$ electric (magnetic) transition are pure. The emitted polarization can be chosen through thex_vec
parameter. Ifx_vec
isNone
, the above equation will be summed over two orthogonal polarization vectors. The emitted multipole orders can be limited through thek
parameter. The transitions contributing to the scattering rate can be limited through the index listsi
andf
of the initial and final states, before and after spontaneous decay, respectively. If no emission direction is chosen (theta = phi = k_vec = None
), the above equation simplifies to the scattering rate into the complete $4\pi$ solid angle (without polarization selection) $$\begin{aligned} \Gamma_\mathrm{sc}(\rho) &= \sum\limits_{f\in\mathcal{F}} \sum\limits_{i\in\mathcal{I}}\sum\limits_{(Xk)_{fi}} \rho_{ii}A_{if}^{Xk_{fi}}\left(a_{fi,k_{fi}}^{m_i - m_f}\right)^2. \end{aligned}$$- Parameters:
-
- rhoarray_like
The density matrix $\rho$ of the
Atom
. Must have the same size as theAtom
along the specifiedaxis
, andaxis + 1
ifas_density_matrix == True
.- as_density_matrixbool
Whether 'rho' is a state vector or a density matrix.
- karray_like
The rank(s) $k$ of the emitted multipole radiation. If
None
, all orders1 <= k <= Atom.decay_map.k_max
are considered.- thetaarray_like
The elevation angle of detection relative to the $z$-axis.
- phiarray_like
The azimuthal angle of detection in the $xy$-plane.
- k_vecarray_like
An iterable of directional vectors $\hat{k}$ emitted by the atom.
k_vec
must have shape(3, )
or(m, 3)
.- x_vecarray_like
An iterable of complex polarization vectors $\vec{\varepsilon}$ emitted by the atom.
x_vec
must have shape(3, )
or(m, 3)
or be astr
indicating a special polarization:- $e_\theta$:
{'z', 'theta', 't'}
- $e_\phi$:
{'x', 'y', 'xy', 'phi', 'p'}
- $\sigma^-$:
{'-', 's-', 'sigma-', 'l'}
- $\sigma^+$:
{'+', 's+', 'sigma+', 'r'}
- $e_\theta$:
- iarray_like
The initially excited state indexes to consider for spontaneous decay. If
None
, all states are considered.- farray_like
The final decayed state indexes to consider for spontaneous decay. If
None
, all states are considered.- axisint
The axis along which the population is aligned in
rho
. The default isaxis = 1
, expectingrho
as an array with shape(n, Atom.size, Atom.size, ... )
.
- Returns:
-
- Gamma_scndarray
The scattering rate $\Gamma_\mathrm{sc}$ as an array with shape
(m, n, ...)
.