- qspec.analyze.linear_monte_carlo ( x , y , sigma_x = None , sigma_y = None , corr = None , optimize_cov = True , n_samples = None , n_accepted = None , optimize_sampling = True , return_samples = False , method = 'py' , report = True , ** kwargs )[source]
Wrapper for linear_nd_monte_carlo.
- Parameters:
-
- xndarray | Iterable
The x data. Must be a 1-d array.
- yndarray | Iterable
The y data. Must be a 1-d array.
- sigma_xndarray | Iterable
The 1-sigma uncertainties of the x data. Must be a 1-d array.
- sigma_yndarray | Iterable
The 1-sigma uncertainties of the y data. Must be a 1-d array.
- corrndarray | Iterable
The correlation coefficients between the x and y data. Must be a 1-d array.
- optimize_covbool
If True, the origin vector of the straight is optimized to yield the smallest covariances.
- n_samplesint
Maximum number of generated samples. If None and method == 'cpp', samples are generated until 'n_accepted' samples get accepted.
- n_acceptedint
The number of samples to be accepted for each data point. Only available if method == 'cpp'.
- optimize_samplingbool
Whether to optimize the sampling from the data.
- return_samplesbool
Whether to also return the generated points 'p'. 'p' has shape (n_samples, k ,2).
- methodstr
The method to generate the collinear points. Can be one of {'py', 'cpp'}. The 'py' version is faster but only allows to specify 'n_samples'. The 'cpp' version is slower but allows to specify both 'n_accepted' and 'n_samples'.
- reportbool
Whether to print the result of the fit.
- kwargsNone
Additional keyword arguments.
- Returns:
-
- outNone
a, b, sigma_a, sigma_b, corr_ab. The best y-intercept and slope, their respective 1-sigma uncertainties and their correlation coefficient.