- qspec.analyze.curve_fit ( f , x , y , p0 = None , p0_fixed = None , sigma = None , absolute_sigma = False , check_finite = True , bounds = (-inf, inf) , method = None , jac = None , full_output = False , report = False , ** kwargs )[source]
-
- Parameters:
-
- fCallable
The model function to fit to the data.
- xarray_like | object
The x data.
- yarray_like
The y data.
- p0ndarray | Iterable
A numpy array or an Iterable of the initial guesses for the parameters. Must have at least the same length as the minimum number of parameters required by the function 'f'. If 'p0' is None, 1 is taken as an initial guess for all non-keyword parameters.
- p0_fixedndarray | Iterable
A numpy array or an Iterable of bool values specifying, whether to fix a parameter. Must have the same length as p0.
- sigmandarray | Iterable | Callable
The 1-sigma uncertainty of the y data. This can also be a function g such that 'g(x, y, f(x, *params), *params) -> sigma'.
- absolute_sigmabool
See scipy.optimize.curve_fit.
- check_finitebool
See scipy.optimize.curve_fit.
- bounds(ndarray, ndarray)
See scipy.optimize.curve_fit.
- methodstr
See scipy.optimize.curve_fit.
- jacCallable | str
See scipy.optimize.curve_fit. Must not be callable if 'sigma' is callable.
- full_outputbool
See scipy.optimize.curve_fit.
- reportbool
Whether to print the result of the fit.
- kwargsNone
See scipy.optimize.curve_fit.
- Returns:
-
- outNone
popt, pcov. The optimal parameters and their covariance matrix. Additional output if full_output is True. See scipy.optimize.curve_fit.