- qspec.wigner_6j ( j1 , j2 , j3 , j4 , j5 , j6 , as_sympy = False )[source]
Calculate the Wigner-6j symbol $$W_{J_4J_5J_6}^{J_1J_2J_3}\coloneqq \begin{Bmatrix} J_1 & J_2 & J_3 \\ J_4 & J_5 & J_6 \end{Bmatrix}.$$
- Parameters:
-
- j1sympy_quant
$J_1$
- j2sympy_quant
$J_2$
- j3sympy_quant
$J_3$
- j4sympy_quant
$J_4$
- j5sympy_quant
$J_5$
- j6sympy_quant
$J_6$
- as_sympybool
Return the result as a symbol (
True) or as afloat(False).
- Returns:
-
- w6sympy_core | float
The Wigner-6j symbol $W_{J_4J_5J_6}^{J_1J_2J_3}$.