- qspec.wigner_3j ( j1 , j2 , j3 , m1 , m2 , m3 , as_sympy = False )[source]
Calculate the Wigner-3j symbol $$W_{m_1m_2m_3}^{J_1J_2J_3}\coloneqq \begin{pmatrix} J_1 & J_2 & J_3 \\ m_1 & m_2 & m_3 \end{pmatrix}.$$
- Parameters:
-
- j1sympy_quant
The angular momentum quantum number $J_1$.
- j2sympy_quant
The angular momentum quantum number $J_2$.
- j3sympy_quant
The angular momentum quantum number $J_3$.
- m1sympy_quant
The magnetic quantum number $m_1$.
- m2sympy_quant
The magnetic quantum number $m_2$.
- m3sympy_quant
The magnetic quantum number $m_3$.
- as_sympybool
Return the result as a symbol (
True) or as afloat(False).
- Returns:
-
- w3sympy_core | float
The Wigner-3j symbol $W_{m_1m_2m_3}^{J_1J_2J_3}$.