- qspec.reduced_f ( i , j_l , f_l , j_u , f_u , as_sympy = False )[source]
The geometric coefficient $$f_F^{F^\prime} = (2F_l + 1)(2F_u + 1)\begin{Bmatrix} J_u & J_l & 1 \\ F_l & F_u & I \end{Bmatrix}^2,$$ as described in [R. C. Brown et al., Phys. Rev. A 87, 032504 (2013)].
- Parameters:
-
- isympy_quant
The nuclear spin quantum number $I$.
- j_lsympy_quant
The electronic total angular momentum quantum number $J_l$ of the lower state.
- f_lsympy_quant
The total angular momentum quantum number $F_l$ of the lower state.
- j_usympy_quant
The electronic total angular momentum quantum number $J_u$ of the upper state.
- f_usympy_quant
The total angular momentum quantum number $F_u$ of the upper state.
- as_sympybool
Return the result as a symbol (
True) or as afloat(False).
- Returns:
-
- outsympy_core | float
The geometric coefficient $f_F^{F^\prime}$.