- qspec.hyper_zeeman_num ( i , j , a_hyper = 0.0 , b_hyper = 0.0 , g_i = 0.0 , g_j = 0.0 , b_field = 0.0 , g_n_as_gyro = False , as_freq = True )[source]
The shifted energies/frequencies of the hyperfine structure states generated by the quantum numbers $I$ and $J$. This function numerically calculates the full diagonalization of the Hyperfine-structure + Zeeman-effect Hamiltonian $$ H = \sum\limits_{k=1}^{2} \vec{T}_I^{(k)}\cdot\vec{T}_J^{(k)} - \vec{\mu}_F\cdot\vec{\mathcal{B}}. $$
- Parameters:
-
- iquant_like
The nuclear spin quantum number $I$.
- jquant_like
The electronic total angular momentum quantum number $J$.
- a_hyperarray_like
The magnetic dipole hyperfine constant $A = \mu_I \mathcal{B}_J / (IJ)$ (MHz if
as_freq
else eV).- b_hyperarray_like
The electric quadrupole hyperfine constant $B = eQ_I (\partial^2 V_J / \partial z^2)$ ([
a_hyper
]).- g_iarray_like
The nuclear g-factor $g_I$ or the gyromagnetic ratio $\gamma_I$ if
g_n_as_gyro == True
.- g_jarray_like
The electronic g-factor $g_J$.
- b_fieldarray_like
The B-field $\mathcal{B}$ (T).
- g_n_as_gyrobool
Whether
g_i
is the nuclear g-factor or the gyromagnetic ratio $\gamma_I$ (MHz).- as_freqbool
The matrix element can be returned in energy (
False
, eV) or frequency units (True
, MHz). The default isTrue
- Returns:
-
- (e_eig, m_list, f_list, mi_mj_list)(list[ndarray], list[quant], list[list[quant]], list[list[tuple[quant, quant]]])
The eigenvalues of the Hamiltonian $H$ sorted according to lists of $m_F$, $F$ and $(m_I, m_J)$, which are returned as the second to forth arguments.