- qspec.hyper_zeeman_num ( i , j , hyper_const = 0.0 , gi = 0.0 , gj = 0.0 , b_field = 0.0 , g_n_as_gyro = False , as_freq = True )[source]
The shifted energies/frequencies of the hyperfine structure states generated by the quantum numbers $I$ and $J$. This function numerically calculates the full diagonalization of the Hyperfine-structure + Zeeman-effect Hamiltonian $$ H = \sum\limits_{k=1}^{3} \left[\mathbf{T}_I^{(k)}\otimes\mathbf{T}_J^{(k)}\right]^{(0)} - \vec{\mu}_F\cdot\vec{\mathcal{B}}. $$
- Parameters:
-
- iquant_like
The nuclear spin quantum number $I$.
- jquant_like
The electronic total angular momentum quantum number $J$.
- hyper_constarray_like
The hyperfine structure constants $A = \mu_I \mathcal{B}_J / (IJ)$, $B = eQ_I (\partial^2 V_J / \partial z^2)$ and $C = \Omega_I T_J^{(3)}$ of the magnetic dipole, electric quadrupole and magnetic octupole order, respectively. If a scalar is given, only the $A$ constant is used (MHz if
as_freqelse eV).- giarray_like
The nuclear g-factor $g_I$ or the gyromagnetic ratio $\gamma_I$ if
g_n_as_gyro == True.- gjarray_like
The electronic g-factor $g_J$.
- b_fieldarray_like
The B-field $\mathcal{B}$ (T).
- g_n_as_gyrobool
Whether
giis the nuclear g-factor or the gyromagnetic ratio $\gamma_I$ (MHz).- as_freqbool
The matrix element can be returned in energy (
False, eV) or frequency units (True, MHz). The default isTrue
- Returns:
-
- (e_eig, m_list, f_list, mi_mj_list)(list[ndarray], list[quant], list[list[quant]], list[list[tuple[quant, quant]]])
The eigenvalues of the Hamiltonian $H$ sorted according to lists of $m_F$, $F$ and $(m_I, m_J)$, which are returned as the second to forth arguments.