- qspec.normal_chi2_convolved_vx_pdf ( vx , m , t , scale_e , e0 = 0 , relativistic = True )[source]
The probability density at the velocity $v_x$ of particles with kinetic energy $E_x$, distributed according to a convolution of a normal and a $\chi^2_1$ distribution $$\begin{aligned} \rho^\prime(v_x) = m|v_x|\gamma^3(v_x)\rho(E_x(v_x)), \qquad\int\limits_0^\infty \rho^\prime(v_x)\mathrm{d}v_x = 1, \end{aligned}$$ where $\gamma$ is the time-dilation factor and $\rho$ is the probability density function
normal_chi2_convolved_ex_pdf
.- Parameters:
-
- vxarray_like
The velocity quantiles $v_x$ (m/s).
- marray_like
The mass $m$ of the particle (u).
- tarray_like
The temperature $T$ of the environment (K).
- scale_earray_like
The standard deviation $\sigma_{E_x}$ of the normal distribution (eV).
- e0array_like
The mean energy $E_0$ of the normal distribution (eV).
- relativisticbool
Kinetic energies are calculated either relativistically (
True
) or classically (False
).
- Returns:
-
- rho_vxndarray
The probability density in thermal equilibrium at the velocity
vx
(s/m).