- qspec.simulate. Interaction.master ( t , delta = None , m = 0 , v = None , y0 = None )[source]
Solver for the master equation $$\begin{aligned} \frac{\partial\rho}{\partial t} &= -i[H, \rho] + \sum\limits_{i,j} \Gamma_{\!ij}\mathcal{D}[\sigma_{ij}]\rho\\[2ex] \mathcal{D}[\sigma]\rho &\coloneqq \sigma\rho\sigma^\dagger - \frac{1}{2}(\sigma^\dagger\sigma\rho + \rho\sigma^\dagger\sigma),\quad\sigma_{ij} = |i\rangle\langle j|\\[2ex] \Gamma_{\!ij} &= \sum\limits_{Xk_{ij}} (a_{ij,k_{ij}}^{m_j - m_i})^2\,A_{ji}^{Xk_{ij}}\\[2ex] a_{ij,k_{ij}}^\lambda &= (-1)^{F_i + I + k_{ij} + J_j}\sqrt{(2F_i + 1)(2J_j + 1)} \langle F_im_ik_{ij}\lambda|F_jm_j\rangle\begin{Bmatrix}J_j & J_i & k_{ij} \\F_i & F_j & I\end{Bmatrix}\\[2ex] X_{\!ij} &= \begin{cases}+1, & \text{if electric } (\mathrm{E}k_{ij}) \\ \ \,0, & \text{if magnetic } (\mathrm{M}k_{ij})\end{cases}, \end{aligned}$$ where the Hamiltonian $H$ (2π MHz) is time-independent whenever possible, see
qspec.simulate.Interaction.hamiltonian. Solutions fornsamples can be calculated in parallel fornttimes.- Parameters:
-
- tarray_like
The times $t$ when to compute the solution. Any array is cast to the shape
(nt, ), wherentis the size of the arrayt(μs).- deltaarray_like
An array of laser frequency shifts $\vec{\Delta}$.
deltamust be a scalar, a 1d- or 2d-array with shapes(n, )or(n, nl), respectively, wherenlis the number of lasers of theInteraction(MHz).- mOptional[int]
The index of the shifted laser. If
deltais a 2d-array,mist omitted.- varray_like
Atom velocities $\vec{v}$. Must be a scalar or have shape
(n, )or(n, 3). In the first two cases, the velocity vector(s) are assumed to be aligned with the $x$-axis (m/s).- y0array_like
The initial state / density matrix of the
Atom. This must beNoneor have shape(Atom.size, ),(n or 1, Atom.size)or(n or 1, Atom.size, Atom.size). IfNone, all states with the same label as the firstStateinatom.statesare populated equally.
- Returns:
-
- rho_tndarray
The integrated master equation as a complex-valued array of shape
(n, Atom.size, Atom.size, nt).