- qspec.gaussian_doppler_3d ( r , k , w0 , v , r0 = None , axis = -1 )[source]
The length |$\vec{k}^\prime$| of the Doppler-shifted 3-vector
k
in the rest frame of the atom $$\begin{aligned} |\vec{k}^\prime| &= |\vec{k}|\gamma\left[1 - \beta\cos(\alpha)\left(1 - \frac{w_0^2}{2z_+^2} - \frac{\rho^2z_-^2}{2z_+^4}\right) - \beta\sin(\alpha)\frac{\rho z}{z_+^2}\right]\\[2ex] z_\pm^2 &= z^2 \pm z_0^2\\[2ex] z_0 &= \frac{1}{2}|\vec{k}|w_0^2\\[2ex] z &= (\vec{r} - \vec{r}_0)\cdot\hat{k}\\[2ex] \rho &= \sqrt{\left[(\vec{r} - \vec{r}_0)\cdot\hat{x}\right]^2 + \left[(\vec{r} - \vec{r}_0)\cdot\hat{y}\right]^2}, \end{aligned}$$ where $\beta = |\vec{v}| / c$ is the relativistic velocity, $\gamma$ the time-dilation factor and $\alpha$ the angle between $\vec{k}$ and $\vec{v}$.- Parameters:
-
- rarray_like
The position 3-vector $\vec{r}$ where to calculate the beam intensity (m).
- karray_like
The 3-vector $\vec{k}$ of light, where $|\vec{k}| = \omega / c$ (rad / m).
- w0array_like
The beam waist $w_0$ (m).
- varray_like
The velocity 3-vector $\vec{v}$ (m/s).
- r0array_like
The position 3-vector $\vec{r}_0$ of the beam waist. If
r0
isNone
, it is[0., 0., 0.]
(m).- axisint
The axis along which the vector components are aligned.
- Returns:
-
- k_absndarray
The length |$\vec{k}^\prime$| (rad / m).
- Raises:
-
- ValueError
r
,k
,v
andr0
must have 3 components along the specifiedaxis
. The shapes ofr
,k
,w0
,v
andr0
must be compatible.